Article ID Journal Published Year Pages File Type
2132326 Experimental Cell Research 2008 9 Pages PDF
Abstract

We found that wortmannin, a potent phosphoinositide 3-kinase (PI3K) inhibitor, markedly induced the formation of Rab21-positive tubular compartments in A431 cells. By time-lapse fluorescence microscopy of live cells co-expressing fluorescent protein-fused Rab21 and other marker proteins, it was shown that the Rab21-positive tubules in wortmannin-treated cells were derived from Rab5-positive early endosomes, but not from late endosomes, recycling endosomes, lysosomes or the trans-Golgi network. The formation of Rab21-positive tubules was very dynamic and required microtubules. Rab21-positive tubules were also formed by the treatment of cells with 3-methyladenine (3-MA), which inhibits class III PI3K rather than class I PI3K. Furthermore, the loss of PI(3)P correlated with the tubulation of Rab21-positive endosomes in cells co-expressing fluorescent protein-fused Rab21 and a tandem FYVE domain. These results suggest that the lowering of PI(3)P as a result of class III PI3K inhibition may be an important cue for the morphological change of Rab21-positive early endosomes from vesicular to tubular form.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, ,