Article ID Journal Published Year Pages File Type
2132435 Experimental Cell Research 2006 12 Pages PDF
Abstract

Highly conserved non-coding DNA regions (HCNR) occur frequently in vertebrate genomes, but their functional roles remain unclear. Here, we provide evidence that a large portion of HCNRs are enriched for binding sites for Sox, POU and Homeodomain transcription factors, and such HCNRs can act as cis-regulatory regions active in neural stem cells. Strikingly, these HCNRs are linked to several hundreds of genes expressed in the developing CNS and they may exert locus-wide regulatory effects on multiple genes flanking their genomic location. Moreover, these data imply a unifying transcriptional logic for a large set of CNS-expressed genes in which Sox and POU proteins act as generic promoters of transcription while Homeodomain proteins control the spatial expression of genes through active repression.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , , ,