Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2133809 | Experimental Hematology | 2014 | 14 Pages |
Abstract
In chronic myeloid leukemia (CML) cells from different stages of maturation may have differential expression of BCR-ABL at both messenger RNA (mRNA) and protein level. However, the significance of such differential expression to clinical disease behavior is unknown. Using the CML-derived, BCR-ABL expressing cell line, K562, distinct plastic-adherent (K562/Adh) and nonadherent (K562/NonAdh) subpopulations were established and then analyzed both as single cells and as bulk cell populations. BCR-ABL mRNA was upregulated in K562/Adh compared with K562/NonAdh cells in both single cell and bulk population analyses (p < 0.0001). Similarly, phosphorylation of BCR protein was upregulated in K562/Adh, compared with K562/NonAdh cells (63.42% vs. 23.1%; p = 0.007), and these two K562 subpopulations were found to express significantly different microRNA species. Furthermore, treatment with the BCR-ABL tyrosine kinase inhibitor, imatinib, reduced cell viability more rapidly in K562/NonAdh compared with K562/Adh cells (p < 0.005) both at single and bulk cell levels. This discovery of an adherent subpopulation of K562 cells with increased BCR-ABL mRNA, increased phosphorylated BCR protein expression, differential microRNA expression, and increased imatinib resistance suggests that a similar subpopulation of cells can also mediate clinical resistance to imatinib during treatment of patients with CML.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Ehsan Ghayoor Karimiani, Fiona Marriage, Anita J. Merritt, John Burthem, Richard John Byers, Philip J.R. Day,