Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2134378 | Experimental Hematology | 2012 | 11 Pages |
Abstract
The goal of this study was to elucidate the role of α-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating the ionizing-radiation-induced gastrointestinal syndrome in mice. We demonstrate the efficacy of a bridging therapy that will allow the lymphohematopoietic system of severely immunocompromised victims exposed to ionizing radiation to recover from high doses of radiation. CD2F1 mice were irradiated with a high dose of radiation causing gastrointestinal syndrome (11 Gy, cobalt-60 γ-radiation) and then transfused intravenously (retro-orbital sinus) with whole blood or peripheral blood mononuclear cells (PBMC) from TS- and AMD3100-injected mice 2, 24, or 48 hours post irradiation and monitored for 30-day survival. Jejunum sections were analyzed for tissue area, surviving crypts, villi, mitotic figures, and basal lamina enterocytes. Our results demonstrate that infusion of whole blood or PBMC from TS- and AMD3100-injected mice significantly improved survival of mice receiving a high dose of radiation. Histopathology and immunostaining of jejunum from irradiated and TS- and AMD3100-mobilized PBMC-transfused mice reveal significant protection of gastrointestinal tissue from radiation injury. We demonstrate that TS and AMD3100 mobilize progenitors into peripheral circulation and that the infusion of mobilized progenitor-containing blood or PBMC acts as a bridging therapy for immune-system recovery in mice exposed to high, potentially fatal, doses of ionizing radiation.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Vijay K. Singh, Stephen Y. Wise, Pankaj K. Singh, Elizabeth J. Ducey, Oluseyi O. Fatanmi, Thomas M. Seed,