Article ID Journal Published Year Pages File Type
2134791 Experimental Hematology 2006 10 Pages PDF
Abstract

Several organs including hematopoietic ones may regenerate by attracting stem cells that are mobilized from their niches in response to stress related to tissue/organ damage and after mobilization circulate in the peripheral blood. The trafficking of these cells is regulated by α-chemokine stromal derived factor-1 (SDF-1) that is upregulated in damaged organs and binds to seven-transmembrane-span G-protein-coupled CXCR4 receptor that is expressed on circulating stem cells. In parallel, evidence has accumulated that the complement (C) system, which is part of innate immunity, may also orchestrate regeneration. C becomes activated with the release of the third complement component (C3) cleavage fragments (e.g., C3a, desArgC3a, and iC3b) during tissue/organ injury. Our recent work demonstrated that these fragments modulate responsiveness of CXCR4+ stem cells to an SDF-1 gradient. Thus the high concentration of both SDF-1 and C3 cleavage fragments in damaged organs results in the formation of an optimal gradient for chemoattracting circulating CXCR4+ stem cells. In this review we will focus on interactions between the SDF-1–CXCR4 axis and the C3 cleavage fragments in a model of mobilization, trafficking, and homing of hematopoietic stem/progenitor cells (HSPC).

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , ,