Article ID Journal Published Year Pages File Type
2134923 Experimental Hematology 2010 12 Pages PDF
Abstract

ObjectiveHaving previously demonstrated that the complement system modulates mobilization of hematopoietic stem/progenitor cells (HSPC) in mice, we investigated the involvement of C5 cleavage fragments (C5a/desArgC5a) in human HSPC mobilization.Materials and MethodsC5 cleavage fragments in the plasma were evaluated by enzyme-linked immunosorbent assay using human anti-desArgC5a antibody, and expression of the C5a/desArgC5a receptor (CD88) in hematopoietic cells by flow cytometry. We also examined the chemotactic responses of hematopoietic cells to C5 cleavage fragments and expression of stromal cell−derived factor-1 (SDF-1)−degrading proteases that perturb retention of HSPC in bone marrow, namely matrix metalloproteinase (MMP)-9, membrane type (MT) 1−MMP, and carboxypeptidase M.ResultsWe found that plasma levels of desArgC5a are significantly higher in patients who are good mobilizers and correlate with CD34+ cell and white blood cell counts in mobilized peripheral blood. C5 cleavage fragments did not chemoattract myeloid progenitors (colony-forming unit granulocyte-macrophage), but desArgC5a did strongly chemoattract mature nucleated cells. Consistently, CD88 was not detected on CD34+ cells, but appeared on more mature myeloid precursors, monocytes, and granulocytes. Moreover, granulocyte colony-stimulating factor−mobilized peripheral blood mononuclear cells and polymorphonuclear cells had a significantly higher percentage of cells expressing CD88 than nonmobilized peripheral blood. Furthermore, C5a stimulation of granulocytes and monocytes decreased CXCR4 expression and chemotaxis toward an SDF-1 gradient and increased secretion of MMP-9 and expression of MT1−MMP and carboxypeptidase M.ConclusionC5 cleavage fragments not only induce a highly proteolytic microenvironment in human bone marrow, which perturbs retention through the CXCR4/SDF-1 axis, but also strongly chemoattracts granulocytes, promoting their egress into mobilized peripheral blood, which is crucial for subsequent mobilization of HSPC.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , ,