Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2136667 | Leukemia Research | 2014 | 7 Pages |
•111In-DTPA-NLS-CSL360 radioimmunoconjugates recognize CD123+/CD131−leukemia stem cells.•Primary AML specimens engrafted into NOD/SCID mice were imaged by microSPECT/CT.•111In-DTPA-NLS-CSL360 emits Auger electrons with potential for radioimmunotherapy of AML.
Engraftment of primary human acute myeloid leukemia (AML) specimens into the bone marrow (BM) of NOD/SCID mice has been used to study leukemia biology and new treatments for the disease. CSL360 is a chimeric IgG1 monoclonal antibody that recognizes CD123 (IL-3 receptor α-subchain) expressed in the absence of CD131 (β-subchain), an epitope that is displayed by leukemia stem cells (LSCs). We are studying CSL360 modified with diethylenetriaminepentaacetic acid (DTPA) for complexing 111In and 13-mer nuclear translocation sequence (NLS) peptides to enable nuclear importation in LSCs for Auger electron radioimmunotherapy (RIT) of AML. We demonstrate that microSPECT/CT imaging using 111In-DTPA-NLS-CSL360 revealed engraftment of primary human AML specimens into the BM and spleen of NOD/SCID mice. Our results suggest that microSPECT/CT imaging is a powerful tool which enables non-invasive assessment of the engraftment of AML into NOD/SCID mice and in the current study specifically probes an epitope displayed by the LSC subpopulation. The targeting of 111In-DTPA-NLS-CSL360 to sites of AML engraftment in the NOD/SCID mouse model is encouraging for future RIT studies. Ultimately, SPECT imaging could be applied in AML patients to assess the delivery of 111In-DTPA-NLS-CSL360 to sites of leukemia and be combined with Auger electron RIT using the same agent targeting the LSC population as a “theranostic” pair.
Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (131 K)Download as PowerPoint slide