Article ID Journal Published Year Pages File Type
2137252 Leukemia Research 2011 5 Pages PDF
Abstract

Synthetic glucocorticoids (GCs) form a crucial first-line treatment for childhood acute lymphoblastic leukemia (ALL). However prolonged GC therapy frequently leads to GC-resistance with an unclear molecular mechanism. 11β-hydroxysteroid dehydrogenase (11β-HSD) 2 inactivates GCs within cells. Here, we show the association between GC sensitivity and 11β-HSD2 expression in human T-cell leukemic cell lines. 11β-HSD2 mRNA and protein levels were considerably higher in GC-resistant MOLT4F cells than in GC-sensitive CCRF-CEM cells. The 11β-HSD inhibitor, carbenoxolone pre-treatment resulted in greater cell death with prednisolone assessed by methyl-thiazol-tetrazolium assay and caspase-3/7 assay, suggesting that 11β-HSD2 is a cause of GC-resistance in ALL.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , ,