Article ID Journal Published Year Pages File Type
2145034 Matrix Biology 2008 8 Pages PDF
Abstract

Oval cells participate in liver regeneration when hepatocyte replication is impaired. These precursor cells proliferate in periportal regions and organize in ductules. They are surrounded by a basement membrane, the degradation of which by matrix metalloproteinases (MMP) might trigger their terminal differentiation into hepatocytes. We studied the expression of MMP-2 and MMP-9 and that of one of their tissue inhibitors (TIMP-1) in a model of hepatic regeneration from precursor cells. Regeneration was induced by treating rats with 2-acetylaminofluorene followed by partial hepatectomy. MMP-2 and MMP-9 hepatic expression paralleled oval cell number with a peak at day 9–14 after hepatectomy. They were mainly detected in oval cells. TIMP-1 mRNA and oncostatin M receptor mRNA, a major regulator of TIMP-1 synthesis, markedly increased from day 1 after surgery until day 9 and then declined; they were mainly detected in interlobular bile duct cells and oval cells until day 14. In agreement with the in vivo data, the WB-F344 liver precursor cell line expressed MMP-2 and MMP-9, as well as TIMP-1 and oncostatin M receptor. These data suggest that (a) early increased TIMP-1 synthesis by biliary and oval cells favors basement membrane deposition around proliferating ductular structures through MMP inhibition, (b) delayed increased MMP expression, concomitant to decreased TIMP-1 synthesis, leads to basement membrane degradation, preceding oval cell differentiation, (c) the oncostatin M pathway might play a major role in increased TIMP-1 synthesis.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , ,