Article ID Journal Published Year Pages File Type
2145067 Matrix Biology 2008 19 Pages PDF
Abstract

In humans, mutations in cartilage oligomeric matrix protein (COMP) cause autosomal dominantly inherited skeletal dysplasias. We have generated transgenic mouse lines to study the role of mutant D469Δ COMP in the pathogenesis of pseudoachondroplasia. Biochemical characterization of cartilage tissue demonstrated that transgenic and endogenous COMP subunits were able to form mixed, pentameric molecules in vivo. Mutant COMP was more difficult to extract than the wildtype protein, suggesting an altered anchorage within the matrix. Although both transgenic wildtype and mutant COMP were detected throughout the growth plate, mutant molecules were restricted to the pericellular matrix while wildtype COMP showed a uniform distribution throughout the extracellular matrix. Mice expressing the mutant transgene showed a slight gender specific growth retardation. In mutant animals, the columnar organization in the growth plate was disturbed, proteoglycans were lost and improperly formed collagen fibrils were observed. In some chondrocytes the endoplasmic reticulum was dilated, most probably due to an impaired secretion of mutant COMP similar to that observed in patients. Later in development, the growth plate was irregularly shaped and prematurely invaded by bony tissue. In addition, a fusion of the third and fourth sternebrae was frequently observed.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , ,