Article ID Journal Published Year Pages File Type
214564 International Journal of Mineral Processing 2007 9 Pages PDF
Abstract

An oxide gold ore was subjected to chloride/hypochlorite leaching at room temperature. The effects of three factors, including Ca(OCl)2 vs. NaOCl, OCl− concentration, and HCl concentration on gold leaching performance were investigated. Due to formation of CaOCl+ complex in solution and hence less reactivity, calcium hypochlorite produces a sluggish gold leaching kinetics, taking twice the time (46 h) to achieve maximum gold recovery of 58% compared to sodium hypochlorite. 10 g/L of total initial hypochlorite species in solution produces reasonable gold recoveries. The amount of added HCl and hence the initial pH was found to have a major effect on gold leaching kinetics and maximum gold recovery. A high level of 9 g/L of added HCl causes HClO to be very reactive, producing very fast kinetics, reaching 67% gold extraction in 4 h. It also causes a faster consumption of hypochlorous acid, through catalytic decomposition (by NiO and CuO) and disproportionation. Hypochlorous acid reactions with sulfide and ferrous content of ore proceed very slowly in the pH range of 4–11. Gold–chloro complexes are strongly adsorbed on quartz component of ore. To minimize this undesirable adsorption of gold–chloro species, the aging time must be limited to a few hours only.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
,