Article ID Journal Published Year Pages File Type
2145981 Molecular Oncology 2009 10 Pages PDF
Abstract

Antibodies have become valuable therapeutic agents for targeting of extracellular proteins in various diseases, including cancer, autoimmunity and cardiovascular disorders. For breast cancer, antibodies targeting the human HER2 have been shown to result in cell growth inhibition both in vitro and in patients with breast tumors. There is evidence to suggest that targeting multiple HER2 epitopes may result in increased growth inhibition making it interesting to find antibodies targeting new epitopes. Here, we report on a new scheme to discover antibodies directed to new epitopes using the extracellular domain of the HER2 as a model. Polyclonal antibodies were generated using recombinant protein fragments and affinity purified fractions of the antibodies were functionally characterized and precisely epitope mapped using bacterial surface display. Polyclonal antibodies towards a 127 amino acid recombinant protein fragment spanning between domains II and III of the HER2 were shown to bind to human ductal carcinoma cell line BT474 resulting in growth inhibition. Affinity purification demonstrated that antibodies to two separate regions from the N- and C-terminal end of the fragment exhibited the growth inhibition. Epitope mapping of the C-terminal antibodies revealed a 25 amino acid region (LPESFDGDPASNTAPLQPEQLQVF) with two distinct epitopes mediating efficient growth inhibition. The results suggest that antibodies directed towards this region of domain III of the HER2, distinct from the well-known monoclonal antibodies trastuzumab and pertuzumab, bind to the HER2 on living cells and exhibit growth inhibition. The work describes a new strategy to develop antibodies directed to non-overlapping epitopes and shows a path of pursuit to explore the epitope space of a target protein.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , ,