Article ID Journal Published Year Pages File Type
2148161 Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2012 7 Pages PDF
Abstract

Dammar resin has long been used in foods as either a clouding or a glazing agent. In a recent study, 2% Dammar resin showed significant hepatocarcinogenicity in a rat 2-year bioassay. Therefore, for an accurate estimate of human risk, it is necessary to understand whether Dammar resin induces liver genotoxicity and the underlying mechanisms of its hepatocarcinogenicity. Modifying effects of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a typical genotoxic carcinogen produced during cooking of protein-rich foods, was also studied in the present study. Exposure of gpt delta mice to Dammar resin at a dose of 2% for 12 weeks did not induce any obvious mutagenicity in the liver. However, the index of cell proliferation, the level of 8-OHdG, and bax, bcl-2, p53, cyp1a2, cyp2e1, gpx1 and gstm2 gene expression were all significantly increased when compared with the control group. In the IQ treatment group, at a dose of 300 ppm, mutagenicity was readily detected, the index of cell proliferation increased, and p53, cyp2e1 and gpx1 gene expression was down-regulated in the liver. Down-regulation of p53, P450s, and gpx1 in the livers of IQ treated mice are consistent with its genotoxic mechanism of carcinogenicity observed in a 675-day study. In contrast, our results using gpt delta mice suggest that Dammar resin is not genotoxic. Instead, the Dammar resin-induced hepatocarcinogenicity seen in our previous 2-year study with rats may have been mediated by non-genotoxic mechanisms, including increased P450 enzyme activity, increased oxidative stress, altered gene expression, and promotion of cell proliferation.

► Dammar resin did not induce any obvious mutagenicity in the livers of gpt delta mice. ► Dammar resin-induced hepatocarcinogenicity may be mediated by nongenotoxic mechanisms. ► IQ induced obvious mutagenicity in the livers of gpt delta mice. ► IQ-induced hepatocarcinogenicity may be partly mediated by genotoxic mechanisms.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , ,