Article ID Journal Published Year Pages File Type
2149089 Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2008 6 Pages PDF
Abstract
Malaria has been reported to modulate the activity of cytochrome-P450 enzymes (CYP). Since CYPs are involved both in the activation and detoxication of xenobiotics, we investigated whether malaria would modify the effects of chemical carcinogens in the bone-marrow micronucleus assay. Female C57BL6 mice were infected with Plasmodium berghei (ANKA) and treated (ip route) with cyclophosphamide (CPA, 25 mg/kg body weight), 7,12-dimethylbenz[a]anthracene (DMBA, 50 mg/kg body weight) or ethyl methanesulfonate (EMS, 150 mg/kg body weight), on post-infection days 9-12 when parasitemia was ≥9% of RBC. Controls were age-paired non-infected mice. Bone marrows were sampled at 24 and 48 h (CPA), 24 h (EMS) or 48 h (DMBA) after treatment. The background incidence of polychromatic erythrocytes with micronuclei (MN-PCE) in malaria-infected mice was approximately twofold the background incidence in non-infected controls. Effects of indirect clastogens (CPA and DMBA) in the micronucleus assay were attenuated while the effect of EMS, a direct clastogen, was enhanced by infection. In a separate experiment, malaria was shown to decrease activities of ethoxy-(EROD, a marker for CYP1A) and benzyloxy-(BROD, CYP2B) resorufin-O-dealkylases in liver microsomes. The foregoing findings are consistent with the hypothesis that malaria-caused attenuation of genotoxicity arose from a down modulation of CYP isoforms that convert CPA (CYP2B) and DMBA (CYP1A) into their active metabolites.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , ,