Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2152162 | Neoplasia | 2007 | 13 Pages |
Abstract
Brain fatty acid-binding protein (B-FABP) is normally expressed in radial glial cells, where it plays a role in the establishment of the radial glial fiber network required for neuronal migration. B-FABP is also expressed in astrocytoma tumors and in some malignant glioma cell lines. To address the role of B-FABP in malignant glioma, we have studied the growth properties of clonal populations of malignant glioma cells modified for B-FABP expression. Here, we demonstrate that expression of B-FABP in B-FABP-negative malignant glioma cells is accompanied by the appearance of radial glial-like properties, such as increased migration and extended bipolar cell processes, as well as reduced transformation. Conversely, B-FABP depletion in B-FABP-positive malignant glioma cells results in decreased migration, reduction in cell processes, a more transformed phenotype. Moreover, expression of B-FABP in astrocytomas is associated with regions of tumor infiltration and recurrence. Rather than being a direct manifestation of the tumorigenic process, we propose that the ability of high-grade astrocytoma cells to migrate long distances from the primary tumor reflects properties associated with their cell of origin. Thus, targeting B-FABP-expressing cells may make a significant impact on the treatment of these tumors.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cancer Research
Authors
Raja Mita, Jeffrey E. Coles, Darryl D. Glubrecht, Rohyun Sung, Xuejun Sun, Roseline Godbout,