Article ID Journal Published Year Pages File Type
2153430 Nuclear Medicine and Biology 2015 8 Pages PDF
Abstract

IntroductionCancer stem cells (CSCs) are a subpopulation within a tumor, which possesses the characteristics of self-renewal, differentiation, tumorigenicity, and drug resistance. The aim of this study was to target the colorectal CSC marker CD133 with an131I-labeled specific monoclonal antibody (AC133 mAb) in a nude mouse xenograft model.MethodsColorectal adenocarcinoma cells (LoVo cell line) were separated into CD133(+) and CD133(−) cells by magnetic activated cell sorting. CD133(+), CD133(−), and unsorted LoVo cells were cultured and then implanted subcutaneously into the lower limbs of nude mice (n = 5). AC133 mAb was labeled with 131I by the iodogen method.ResultsThe radiolabeled compound, 131I-AC133 mAb, showed high stability, specificity, and immunoactivity in vitro. Obvious accumulation of 131I-AC133 mAb was seen in nude mice bearing xenografts of CD133(+) and unsorted LoVo cells, but no uptake was found in mice bearing CD133(−) xenografts or specifically blocked xenografts. Biodistribution analysis showed that the tumor uptake of 131I-AC133 mAb was 6.97 ± 1.40, 1.35 ± 0.48, 6.12 ± 1.91, and 1.61 ± 0.44% ID/g (n = 4) at day 7 after injection of 131I-AC133 mAb in CD133(+), CD133(−), unsorted LoVo cell and specifically blocked xenografts, respectively. The results of immunofluorescence, autoradiography, and western blotting further verified the specific binding of 131I-AC133 mAb to CD133(+) tumors.ConclusionsThis study demonstrates the possibility of targeting CSCs with a radiolabeled AC133 mAb in colorectal cancer xenografts based on in vitro, ex vivo, and in vivo experiments. Our findings suggest a new method for imaging CSCs non-invasively.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , ,