Article ID Journal Published Year Pages File Type
2153480 Nuclear Medicine and Biology 2014 7 Pages PDF
Abstract

IntroductionPositron emission tomography (PET) imaging of the norepinephrine transporter (NET) is still hindered by the availability of useful PET imaging probes. The present study describes the radiosynthesis and pre-clinical evaluation of a new compound, exo-3-(6-methoxypyridin-2-yloxy)-8-H-8-azabicyclo[3.2.1]octane (NS8880), targeting NET. NS8880 has an in vitro binding profile comparable to desipramine and is structurally not related to reboxetine.MethodsLabeling of NS8880 with [11C] was achieved by a non-conventional technique: substitution of pyridinyl fluorine with [11C]methanolate in a Boc-protected precursor. The isolated [11C]NS8880 was evaluated pre-clinically both in a pig model (PET scanning) and in a rat model (μPET scanning) and compared to (S,S)-[11C]-O-methylreboxetine ([11C]MeNER).ResultsThe radiolabeling technique yielded [11C]NS8880 in low (<10%) but still useful yields with high purity. The PET in vivo evaluation in pig and rat revealed a rapid brain uptake of [11C]NS8880 and fast obtaining of equilibrium. Highest binding was observed in thalamic and hypothalamic regions. Pretreatment with desipramine efficiently reduced binding of [11C]NS8880.ConclusionBased on the pre-clinical results obtained so far [11C]NS8880 displays promising properties for PET imaging of NET.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , ,