Article ID Journal Published Year Pages File Type
215407 The Journal of Chemical Thermodynamics 2014 9 Pages PDF
Abstract

•A novel windowed Inconel rolling-ball viscometer is designed and used by our team.•Viscosity data are reported for n-hexadecane, n-octadecane, and n-eicosane at high temperatures and pressures.•The viscosity results are compared with the available literature data.•The viscosity results are modeled with the free volume theory model.

Viscosity data are reported for n-hexadecane (C16), n-octadecane (C18), and n-eicosane (C20) at pressures between (3 and 243) MPa and temperatures between (304 and 534) K. These extreme conditions are representative of those encountered in ultra-deep petroleum formations beneath the deepwaters of the Gulf of Mexico. The measurements are taken with a novel windowed Inconel rolling-ball viscometer designed by our team that is calibrated with n-decane. A comparison of the reported viscosity values with the available literature data that cover limited pressure and temperature ranges, shows that the mean absolute percentage deviation, δ, ranges between 1.1% and 4.8%. The reported data extend the database of viscosity to the high-temperature, high-pressure region where most gaps occur in the literature data for n-hexadecane and n-octadecane. To the best of our knowledge, the results for n-eicosane are the first reported viscosity values at pressures above 2 MPa over the entire temperature range. The viscosity results are modeled with the free volume theory model in conjunction with density values obtained using the Peng–Robinson equation of state (EoS) and the PC-SAFT EoS. The δ values obtained with this model range from 2.0% to 3.5%. The data are also correlated by a non-linear surface fit as a simultaneous function of temperature and pressure that yields δ values of 0.40%, 0.43%, and 0.38% for C16, C18, and C20, respectively.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , , , , ,