Article ID Journal Published Year Pages File Type
2154552 Nuclear Medicine and Biology 2010 9 Pages PDF
Abstract

IntroductionStable attachment of 64Cu2+ to a targeting molecule usually requires the use of a bifunctional chelator (BFC). Sarcophagine (Sar) ligands rapidly coordinate 64Cu2+ within the multiple macrocyclic rings comprising the cage structure under mild conditions, providing high stability in vivo. Previously, we have designed a new versatile cage-like BFC Sar ligand, 4-((8-amino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1-ylamino)methyl)benzoic acid (AmBaSar), for 64Cu radiopharmaceuticals. Here we report the improved synthesis of AmBaSar, 64Cu2+ labeling conditions and its biological evaluation compared with the known BFC 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid (DOTA).MethodsThe AmBaSar was synthesized in four steps starting from (1,8-diamine-Sar) cobalt(III) pentachloride ([Co(DiAmSar)]Cl5) using an improved synthetic method. The AmBaSar was labeled with 64Cu2+ in pH 5.0 ammonium acetate buffer solution at room temperature, followed by analysis and purification with HPLC. The in vitro stability of 64Cu-AmBaSar complex was evaluated in phosphate buffered saline (PBS), fetal bovine serum and mouse blood. The microPET imaging and biodistribution studies of 64Cu-AmBaSar were performed in Balb/c mice, and the results were compared with 64Cu-DOTA.ResultsThe AmBaSar was readily prepared and characterized by MS and 1H NMR. The radiochemical yield of 64Cu-AmBaSar was ≥98% after 30 min of incubation at 25°C. The 64Cu-AmBaSar complex was analyzed and purified by HPLC with a retention time of 17.9 min. The radiochemical purity of 64Cu-AmBaSar was more than 97% after 26 h of incubation in PBS or serum. The biological evaluation of 64Cu-AmBaSar in normal mouse demonstrated renal clearance as the primary mode of excretion, with improved stability in vivo compared to 64Cu-DOTA.ConclusionsThe new cage-like BFC AmBaSar was prepared using a simplified synthetic method. The 64Cu-AmBaSar complex could be obtained rapidly with high radiochemical yield (≥98%) under mild conditions. In vitro and in vivo evaluation of AmBaSar demonstrated its promising potential for preparation of 64Cu radiopharmaceuticals.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , ,