Article ID Journal Published Year Pages File Type
2154557 Nuclear Medicine and Biology 2010 10 Pages PDF
Abstract

Nanocarriers can selectively target cancer sites and carry payloads, thereby improving diagnostic and therapeutic effectiveness and reducing toxicity. The objective of this study was to investigate the therapeutic efficacy of a new co-delivery radiochemotherapeutics of 188Re-N,N-bis (2-mercaptoethyl)-N′,N′-diethylethylenediamine (BMEDA)-labeled pegylated liposomal doxorubicin (DXR) (188Re-DXR-liposome) in a C26 murine colon carcinoma solid tumor model. To evaluate the targeting and localization of 188Re-DXR-liposome in C26 murine tumor-bearing mice, biodistribution, microSPECT/CT imaging and pharmacokinetic studies were performed. The antitumor effect of 188Re-DXR-liposome was assessed by tumor growth inhibition, survival ratio and histopathological hematoxylin–eosin staining. The tumor target and localization of the nanoliposome delivery radiochemotherapeutics of 188Re-DXR-liposome were demonstrated in the biodistribution, pharmacokinetics and in vivo nuclear imaging studies. In the study on therapeutic efficacy, the tumor-bearing mice treated with bimodality radiochemotherapeutics of 188Re-DXR-liposome showed better mean tumor growth inhibition rate (MGI) and longer median survival time (MGI=0.048; 74 days) than those treated with radiotherapeutics of 188Re-liposome (MGI=0.134; 60 days) and chemotherapeutics of Lipo-Dox (MGI=0.413; 38 days). The synergistic tumor regression effect was observed with the combination index (CI) exceeding 1 (CI=1.145) for co-delivery radiochemotherapeutics of 188Re-DXR-liposome. Two (25%) of the mice treated with radiochemotherapeutics were completely cured after 120 days. The therapeutic efficacy of radiotherapeutics of 188Re-liposome and the synergistic effect of the combination radiochemotherapeutics of 188Re-DXR-liposome have been demonstrated in a C26 murine solid tumor animal model, which pointed to the potential benefit and promise of the co-delivery of nanoliposome radiochemotherapeutics for adjuvant cancer treatment on oncology applications.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , ,