Article ID Journal Published Year Pages File Type
216204 The Journal of Chemical Thermodynamics 2012 7 Pages PDF
Abstract

(Vapour + liquid) equilibrium (VLE) at P = 101.3 kPa have been determined for a ternary system (2-propanol + tetrahydropyran + 2,2,4-trimethylpentane) and its constituent binary systems (2-propanol + tetrahydropyran, 2-propanol + 2,2,4-trimethylpentane), and (tetrahydropyran + 2,2,4-trimethylpentane). Analysis of VLE data reveals that two binary systems (2-propanol + tetrahydropyran) and (2-propanol + 2,2,4-trimethylpentane) have a minimum boiling azeotrope. No azeotrope was found for the ternary system. The activity coefficients of liquid mixtures were obtained from the modified Raoult’s law and were used to calculate the reduced excess molar Gibbs free energy (gE/RT). Thermodynamic consistency tests were performed for all VLE data using the Van Ness direct test for the binary systems and the test of McDermott–Ellis as modified by Wisniak and Tamir for the ternary system. The VLE data of the binary mixtures were correlated using the three-suffix Margules, Wilson, NRTL, and UNIQUAC activity-coefficient models. The models with their best-fitted interaction parameters of the binary systems were used to predict the ternary (vapour + liquid) equilibrium.

► We report the VLE data at P = 101.3 kPa involving a cyclic ether. ► The activity coefficients of mixtures were obtained from modified Raoult’s law. ► The VLE data were correlated by four liquid activity coefficient models. ► The ternary VLE data were predicted from binary parameters of the four models.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,