Article ID Journal Published Year Pages File Type
2163597 Translational Oncology 2011 11 Pages PDF
Abstract

Radiotherapy is used in the management of pancreatic cancer because of its high propensity for locoregional relapse: one third of patients succumb to localized disease. Thus, strategies to improve the efficacy of radiotherapy in pancreatic cancer are important to pursue. We used naturally serum-free, selectively permeable basement membranes and confocal microscopy of fluorescent antibody-stained human Panc-1, MiaPaCa-2, and BxPC-3 pancreatic cancer cell lines to investigate the effects of ionizing radiation on α5β1 integrin fibronectin receptor expression and on α5β1-mediated invasion. We report that radiation rapidly induces pancreatic cancer cell invasion, and that radiation-induced invasion is caused by up-regulation of α5β1 integrin fibronectin receptors by transcriptional and/or postendocytic recycling mechanisms. We also report that radiation causes α5β1 up-regulation in Panc-1, MiaPaCa-2, and BxPC-3 tumor xenografts and that upregulated α5β1 colocalizes with upregulated early or late endosomes in Panc-1 or BxPC-3 tumors, respectively, although it may colocalize significantly with both endosome types in MiaPaCa-2 tumors. Our results suggest that systemic inhibition of α5β1-mediated invasion might be an effective way to reduce radiation-induced pancreatic cancer cell invasion, thereby improving the efficacy of radiotherapy.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research