Article ID Journal Published Year Pages File Type
2163604 Translational Oncology 2013 233 Pages PDF
Abstract

Although angiogenesis has been proposed as a therapeutic target for the treatment of ovarian granulosa cell tumor (GCT), its potential has not been evaluated in controlled studies. To do so, we used the Ptentm1Hwu/tm1Hwu; Ctnnb1tm1Mmt/+;Amhr2tm3(cre)Bhr/+ (PCA) mouse model, which develops GCTs that mimic the advanced disease in women. A monoclonal anti-vascular endothelial growth factor A (VEGFA) antibody was administered weekly to PCA mice beginning at 3 weeks of age. By 6 weeks of age, anti-VEGFA therapy significantly decreased tumor weights relative to controls (P < .05) and increased survival, with all treated animals but none of the controls surviving to 8 weeks of age. Analyses of PCA tumors showed that anti-VEGFA treatment resulted in significant decreases in tumor cell proliferation and microvessel density relative to controls (P < .05). However, treatment did not have a significant effect on apoptosis or tumor necrosis. The VEGFA receptor 2 (VEGFR2) signaling effector p44/p42 mitogen-activated protein kinase (MAPK), whose activity is associated with cell proliferation, was significantly less phosphorylated (i.e., activated) in tumors from the treated group (P < .05). Conversely, no significant difference was found in the activation of protein kinase B, a VEGFR2 signaling effector associated with cell survival. Together, these results suggest that anti-VEGFA therapy is effective at inhibiting GCT growth in the PCA model and acts by reducing microvascular density and cell proliferation through inhibition of the VEGFR2-MAPK pathway. Findings from this preclinical model therefore support the investigation of targeting VEGFA for the adjuvant treatment of GCT in women.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research