Article ID Journal Published Year Pages File Type
216556 The Journal of Chemical Thermodynamics 2011 5 Pages PDF
Abstract

Experimental (liquid + liquid) equilibrium (LLE) data for a ternary system containing (ethylene glycol + benzene + cyclohexane) were determined at temperatures (298.15, 308.15, and 318.15) K and at atmospheric pressure. The experimental distribution coefficients and selectivity factors are presented to evaluate the efficiency of the solvent for extraction of benzene from cyclohexane. The effect of temperature in extraction of benzene from the (benzene + cyclohexane) mixture indicated that at lower temperatures the selectivity (S) is higher, but the distribution coefficient (K) is rather lower. The LLE results for the system studied were used to obtain binary interaction parameters in the UNIQUAC and NRTL models by minimizing the root mean square deviations (RMSD) between the experimental results and calculated results. Using the interaction parameters obtained, the phase equilibria in the systems were calculated and plotted. The NRTL model fits the (liquid + liquid) equilibrium data of the mixture studied slightly better. The root mean square deviations (RMSDs) obtained comparing calculated and experimental two-phase compositions are 0.92% for the NRTL model and 0.95% for the UNIQUAC model.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,