Article ID Journal Published Year Pages File Type
2166281 Cell Calcium 2010 7 Pages PDF
Abstract

The stromal interaction molecules STIM1 and STIM2 sense a decreasing Ca2+ concentration in the lumen of the endoplasmic reticulum and activate Ca2+ channels in the plasma membrane. In addition, at least 2 reports suggested that STIM1 may also interact with the inositol 1,4,5-trisphosphate (IP3) receptor. Using embryonic fibroblasts from Stim1−/−, Stim2−/− and wild-type mice, we now tested the hypothesis that STIM1 and STIM2 would also regulate the IP3 receptor. We investigated whether STIM1 or STIM2 would be the luminal Ca2+ sensor that controls the loading dependence of the IP3-induced Ca2+ release. Partial emptying of the stores in plasma-membrane permeabilized cells resulted in an increased EC50 and a decreased Hill coefficient for IP3-induced Ca2+ release. This effect occurred both in the presence and absence of STIM proteins, indicating that these proteins were not the luminal Ca2+ sensor for the IP3 receptor. Although Stim1−/− cells displayed a normal IP3-receptor function, agonist-induced Ca2+ release was reduced. This finding suggests that the presence of STIM1 is required for proper agonist-induced Ca2+ signaling. Our data do not provide experimental evidence for the suggestion that STIM proteins would directly control the function of the IP3 receptor.

Keywords
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , , , ,