Article ID Journal Published Year Pages File Type
2166286 Cell Calcium 2010 9 Pages PDF
Abstract

Multiple mechanisms that maintain Ca2+ homeostasis and provide for Ca2+ signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca2+ clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca2+ homeostatic molecules on cytosolic Ca2+ ([Ca2+]i) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca2+]i dynamics. When bathing the cells in a Na+-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca2+-ATPase (PMCA), La3+, all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca2+]i transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca2+ transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca2+ homeostatic pathways, the Na+/Ca2+ exchanger, the endoplasmic reticulum Ca2+ pump, the plasmalemmal Ca2+ pump and mitochondria, are complementary in actively clearing Ca2+ from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca2+]i dynamics; (iii) there is (are) Ca2+ clearance mechanism(s) distinct from the four outlined above; and (iv) Ca2+ homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , , , ,