Article ID Journal Published Year Pages File Type
216670 The Journal of Chemical Thermodynamics 2009 9 Pages PDF
Abstract

The interest on phenothiazine drugs has been increased during last years due to their proved utility in the treatment of several diseases and biomolecular processes. In the present work, the binding of the amphiphilic phenothiazines promazine and thioridazine hydrochlorides to the carrier protein human serum albumin (HSA) has been examined by ζ-potential, isothermal titration calorimetry (ITC), fluorescence and circular dichorism (CD) spectroscopies, and dynamic light scattering (DLS) at physiological pH with the aim of analyzing the role of the different interactions in the drug complexation process with this protein. The ζ-potential results were used to check the existence of complexation. This is confirmed by a progressive screening of the protein charge up to a reversal point as a consequence of drug binding. On the other hand, binding causes alterations on the tertiary and secondary structures of the protein, which were observed by fluorescence and CD spectroscopies, involving a two-step, three-state transition. The thermodynamics of the binding process was derived from ITC results. The binding enthalpies were negative, which reveal the existence of electrostatic interactions between protein and drug molecules. In addition, increases in entropy are consistent with the predominance of hydrophobic interactions. Two different classes of binding sites were detected, viz. Binding to the first class of binding sites is dominated by an enthalpic contribution due to electrostatic interactions whereas binding to a second class of binding sites is dominated by hydrophobic bonding. In the light of these results, protein conformational change resembles the acid-induced denaturation of HSA with accumulation of an intermediate state. Binding isotherms were derived from microcalorimetric results by using a theoretical model based on the Langmuir isotherm. On the other hand, the population distribution of the different species in solution and their sizes were determined through dynamic light scattering (DLS). Aggregation of drug/protein complexes was found as a result of a possible expansion of protein structure induced at high drug concentrations. In addition, the presence of free drug aggregates at concentrations below the drug critical micelle concentration was also detected.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,