Article ID Journal Published Year Pages File Type
2166710 Cell Calcium 2006 8 Pages PDF
Abstract

Normal physiological regulation depends on Ca2+ microdomains, because there is a need to spatially separate Ca2+ regulation of different cellular processes. It is only possible to generate local Ca2+ signals transiently; so, there is an important functional link between Ca2+ spiking and microdomains. The pancreatic acinar cell provides a useful cell biological model, because of its clear structural and functional polarization. Although local Ca2+ spiking in the apical (granular) microdomain regulates fluid and enzyme secretion, prolonged global elevations of the cytosolic Ca2+ concentration are associated with the human disease acute pancreatitis, in which proteases in the granular region become inappropriately activated and digest the pancreas and its surroundings. A major cause of pancreatitis is alcohol abuse and it has now been established that fatty acid ethyl esters and fatty acids, non-oxidative alcohol metabolites, are principally responsible for causing the acinar cell damage. The fatty acid ethyl esters release Ca2+ from the endoplasmic reticulum and the fatty acids inhibit markedly mitochondrial ATP generation, which prevents the acinar cell from disposing of the excess Ca2+ in the cytosol. Because of the abolition of ATP-dependent Ca2+ pump activity, all intracellular Ca2+ concentration gradients disappear and the most important part of the normal regulatory machinery is thereby destroyed. The end stage is necrosis.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , ,