Article ID Journal Published Year Pages File Type
2170273 Current Opinion in Cell Biology 2008 7 Pages PDF
Abstract

Although the dynamic self-assembly behavior of microtubule ends has been well characterized at the spatial resolution of light microscopy (∼200 nm), the single-molecule events that lead to these dynamics are less clear. Recently, a number of in vitro studies used novel approaches combining laser tweezers, microfabricated chambers, and high-resolution tracking of microtubule-bound beads to characterize mechanochemical aspects of MT dynamics at nanometer scale resolution. In addition, computational modeling is providing a framework for integrating these experimental results into physically plausible models of molecular scale microtubule dynamics. These nanoscale studies are providing new fundamental insights about microtubule assembly, and will be important for advancing our understanding of how microtubule dynamic instability is regulated in vivo via microtubule-associated proteins, therapeutic agents, and mechanical forces.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,