Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2170351 | Current Opinion in Cell Biology | 2006 | 8 Pages |
Transcription in eukaryotic cells requires dynamic changes of chromatin structure to facilitate or prevent RNA polymerase access to active genes. These structural modifications rely on the concerted action of ATP-dependent chromatin-remodelling complexes and histone-modifying enzymes, which generate a chromatin configuration that is either compatible with transcription (euchromatin) or incompatible (heterochromatin). Insights into how these structural changes might be coordinated for RNA polymerase I (pol I) genes come from the discoveries of the nucleolar-remodelling complex (NoRC) and B-WICH — a high molecular weight fraction of the WSTF/SNF2h chromatin-remodelling complex. NoRC produces a repressive chromatin state; B-WICH, together with nuclear myosin 1, activates pol I transcription directly on chromatin templates and might also function in the maintenance of ribosomal chromatin structure.