Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
217276 | The Journal of Chemical Thermodynamics | 2008 | 4 Pages |
Abstract
Dimethyl methylphosphonate (DMMP), an important flame retardant in lithium-ion batteries, has been studied theoretically. The energy, enthalpy, and Gibbs free energy of DMMP and its protonated form (DMMP-H+) have been calculated using the high-level ab initio methods G3(MP2), G3(MP2)//B3LYP, G3, G3//B3-LYP, and CBS-QB3. All calculated proton affinities showed good agreement with experiment (within 1.5%), with the best values being obtained with G3MP2. At this level of theory, the calculated proton affinity of DMMP is 895 kJ · mol−1. The ionization potential (9.94 eV) was calculated using the related procedure G3(MP2)-RAD, and also showed excellent with experiment (0.6%). Hydrogen bonding in DMMP-H+ has also been studied.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Mansoor Namazian, Michelle L. Coote,