Article ID Journal Published Year Pages File Type
2174909 Developmental Biology 2008 12 Pages PDF
Abstract

In the early stages of lung development, the endoderm undergoes extensive and stereotypic branching morphogenesis. During this process, a simple epithelial bud develops into a complex tree-like system of tubes specialized for the transport and exchange of gas with blood. The endodermal cells in the distal tips of the developing lung express a special set of genes, have a higher proliferation rate than proximal part, undergo shape change and initiate branching morphogenesis. In this study, we found that of the four p38 genes, only p38α mRNA is localized specifically to the distal endoderm suggesting a role in the regulation of budding morphogenesis. Chemical inhibitors specific for the p38α and p38β isoforms suppress budding of embryonic mouse lung explants and isolated endoderm in vitro. Specific knockdown of p38α in cultured lung endoderm using shRNA also inhibited budding morphogenesis, consistent with the chemical inhibition of the p38 signaling pathway. Disruption of p38α did not affect proliferation or expression of the distal cell markers, Sox9 and Erm. However, the amount of E-cadherin protein increased significantly and ectopic expression of E-cadherin also impaired budding of endoderm in vitro. These results suggest that p38α modulates epithelial cell–cell interactions and possibly cell rearrangement during branching morphogenesis. This study provides the first evidence that p38α is involved in the morphogenesis of an epithelial organ.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,