Article ID Journal Published Year Pages File Type
2175276 Developmental Biology 2007 10 Pages PDF
Abstract

The ability to adjust reproductive output to environmental conditions is important to the fitness of a species. The semelparous, chordate, Oikopleura dioica, is particularly adept in producing a highly variable number of oocytes in its short life cycle. Here we show that this entails an original reproductive strategy in which the entire female germline is contained in a single multinucleate cell, the “coenocyst”. After an initial phase of syncytial nuclear proliferation half of the nuclei entered meiosis whereas the other half became highly polyploid. The inner F-actin network, with associated plasma membranes, formed a highly ramified infrastructure in which each meiotic nucleus was contained in a pseudo-compartmentalized pro-oocyte linked to the common cytoplasm via ring canals. At a set developmental time, a subset of the pro-oocytes was selected for synchronous growth and the common coenocyst cytoplasm was equally partitioned by transfer through the ring canals. Examination of related species indicated that the coenocyst arrangement is a conserved feature of Appendicularian oogenesis allowing efficient numerical adjustment of oocyte production. As Appendicularia are the second most abundant class of zooplankton, with a world-wide distribution, the coenocyst is clearly a common and successful reproductive strategy on a global scale.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,