Article ID Journal Published Year Pages File Type
2176070 Developmental Biology 2006 13 Pages PDF
Abstract

Blood vessel development is in part regulated by pericytes/presumptive vascular smooth muscle cells (PC/pvSMCs). Here, we demonstrate that interactions between PC/pvSMCs and extracellular matrix play a critical role in this event. We show that the cranial vessels in α4 integrin-deficient mouse embryos at the stage of vessel remodeling are increased in diameter. This defect is accompanied by a failure of PC/pvSMCs, which normally express α4β1 integrin, to spread uniformly along the vessels. We also find that fibronectin but not VCAM-1 is localized in the cranial vessels at this stage. Furthermore, cultured α4 integrin-null PC/pvSMCs plated on fibronectin display a delay in initiating migration, a reduction in migration speed, and a decrease in directional persistence in response to a polarized force of shear flow. These results suggest that specific motile activities of PC/pvSMCs regulated by mechanical signals imposed by the interstitial extracellular matrix may also be required in vivo for the distribution and function of the PC/pvSMCs during blood vessel development.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,