Article ID Journal Published Year Pages File Type
2176246 Developmental Biology 2006 13 Pages PDF
Abstract

Mutations in the Drosophila calcineurin B2 gene cause the collapse of indirect flight muscles during mid stages of pupal development. Examination of cell fate-specific markers indicates that unlike mutations in genes such as vestigial, calcineurin B2 does not cause a shift in cell fate from indirect flight muscle to direct flight muscle. Genetic and molecular analyses indicate a severe reduction of myosin heavy chain gene expression in calcineurin B2 mutants, which accounts at least in part for the muscle collapse. Myofibrils in calcineurin B2 mutants display a variety of phenotypes, ranging from normal to a lack of sarcomeric structure. Calcineurin B2 also plays a role in the transition to an adult-specific isoform of troponin I during the late pupal stages, although the incompleteness of this transition in calcineurin B2 mutants does not contribute to the phenotype of muscle collapse. Together, these findings suggest a molecular basis for the indirect flight muscle hypercontractility phenotype observed in flies mutant for Drosophila calcineurin B2.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , ,