Article ID Journal Published Year Pages File Type
217693 Journal of the Chinese Institute of Chemical Engineers 2008 9 Pages PDF
Abstract

With a static type equilibrium cell and the pressure decaying method, the solubility of ethylene in a mixture of 2,2,4-trimethylpentane and 1-octene was measured in the temperature range of 323.15–423.15 K, pressure range of 5–25 bar, and 1-octene concentration from 0 to 85 wt%. The experimental results show that the solubility of ethylene in a 2,2,4-trimethylpentane and 1-octane mixture increases with system pressure but decreases with system temperature.The experimental solubility data were also expressed in the vapor–liquid equilibrium relationship and correlated by the bubble pressure calculation using the Peng–Robinson equation of state (PR EOS) incorporated with the van der Waals one-fluid and the Zhong–Masuoka mixing rules. Among the deviations between the experimental and correlated results, the largest value of average absolute relative deviation is 1.73% for pressure at 423.15 K and that of average absolute deviation is 0.0024 mol fraction for vapor composition at 373.15 K by the Zhong–Masuoka mixing rule.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,