Article ID Journal Published Year Pages File Type
2177236 Developmental Cell 2007 13 Pages PDF
Abstract

SummaryChondrocyte hypertrophy is essential for endochondral bone development. Unexpectedly, we discovered that MEF2C, a transcription factor that regulates muscle and cardiovascular development, controls bone development by activating the gene program for chondrocyte hypertrophy. Genetic deletion of Mef2c or expression of a dominant-negative MEF2C mutant in endochondral cartilage impairs hypertrophy, cartilage angiogenesis, ossification, and longitudinal bone growth in mice. Conversely, a superactivating form of MEF2C causes precocious chondrocyte hypertrophy, ossification of growth plates, and dwarfism. Endochondral bone formation is exquisitely sensitive to the balance between MEF2C and the corepressor histone deacetylase 4 (HDAC4), such that bone deficiency of Mef2c mutant mice can be rescued by an Hdac4 mutation, and ectopic ossification in Hdac4 null mice can be diminished by a heterozygous Mef2c mutation. These findings reveal unexpected commonalities in the mechanisms governing muscle, cardiovascular, and bone development with respect to their regulation by MEF2 and class II HDACs.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , , , , ,