Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2177543 | Developmental Cell | 2008 | 13 Pages |
SummarySpinal motor neurons (MNs) and V2 interneurons (V2-INs) are specified by two related LIM-complexes, MN-hexamer and V2-tetramer, respectively. Here we show how multiple parallel and complementary feedback loops are integrated to assign these two cell fates accurately. While MN-hexamer response elements (REs) are specific to MN-hexamer, V2-tetramer-REs can bind both LIM-complexes. In embryonic MNs, however, two factors cooperatively suppress the aberrant activation of V2-tetramer-REs. First, LMO4 blocks V2-tetramer assembly. Second, MN-hexamer induces a repressor, Hb9, which binds V2-tetramer-REs and suppresses their activation. V2-INs useĀ a similar approach; V2-tetramer induces a repressor, Chx10, which binds MN-hexamer-REs and blocks their activation. Thus, our study uncovers a regulatory network to segregate related cell fates, which involves reciprocal feedforward gene regulatory loops.