Article ID Journal Published Year Pages File Type
2177791 Developmental Cell 2006 14 Pages PDF
Abstract

SummaryActin polymerization essential for endocytic internalization in budding yeast is controlled by four nucleation promoting factors (NPFs) that each exhibits a unique dynamic behavior at endocytic sites. How each NPF functions and is regulated to restrict actin assembly to late stages of endocytic internalization is not known. Quantitative analysis of NPF biochemical activities, and genetic analysis of recruitment and regulatory mechanisms, defined a linear pathway in which protein composition changes at endocytic sites control actin assembly and function. We show that yeast WASP initiates actin assembly at endocytic sites and that this assembly and the recruitment of a yeast WIP-like protein by WASP recruit a type I myosin with both NPF and motor activities. Importantly, type I myosin motor and NPF activities are separable, and both contribute to endocytic coat inward movement, which likely represents membrane invagination. These results reveal a mechanism in which actin nucleation and myosin motor activity cooperate to promote endocytic internalization.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , ,