Article ID Journal Published Year Pages File Type
2182842 Immunobiology 2014 12 Pages PDF
Abstract

Dectin-2, a C-type lectin receptor (CLR), plays an essential role in mediating nuclear factor-kappa B (NF-κB) activation and anti-fungal immunity in response to Candida albicans infection. However, the molecular mechanisms and function of Dectin-2 signaling in response to infection by the pathogenic fungus Aspergillus fumigatus have not been characterized. In order to characterize Dectin-2 signaling in response to A. fumigatus infection, activation of Dectin-2 was analyzed at both transcriptional and translational levels. Spleen tyrosine kinase (Syk) phosphorylation, NF-κB activation and cytokine production downstream of Dectin-2 activation were also investigated. In addition, Dectin-2-Syk function and its ability to mediate reactive oxygen species (ROS) production and elimination of A. fumigatus conidia was examined. We demonstrate that Syk is involved in Dectin-2-induced IκBα (inhibitor of kappa B protein) phosphorylation and NF-κB activation following A. fumigatus stimulation in a time dependent manner. Silencing of Dectin-2 and Syk as well as Syk inhibition blocks NF-κB activation and cytokine secretion. Furthermore, the killing of A. fumigatus conidia and ROS production are significantly affected by Dectin-2 or Syk silencing as well as Syk inhibition. Swelling and germination of the fungus followed by hyphae formation and not the resting and heat-inactivated form of A. fumigatus mediate the activation of Dectin-2 signaling. In conclusion, Syk plays an essential role in IκBα kinase phosphorylation, NF-κB activation, and ROS production mediated by Dectin-2 activation in response to A. fumigatus infection.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , , ,