Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2183764 | Immunobiology | 2012 | 8 Pages |
Abstract
Macrophages are important in inflammation as well as in tissue repair processes. They can be activated by various stimuli and classified into two major groups: M1 (classically activated) or M2 (alternatively activated). Inflammation, angiogenesis and matrix remodeling play a major role in tissue repair. Here, we investigate the combined influence of a pro-angiogenic microenvironment and specific extracellular matrix (ECM) components or tissue culture polystyrene (TCPS) on the dynamics of human macrophage polarization. We established that human angiogenically primed macrophages cultured on different ECM components exhibit an M2-like polarization. These M2-like macrophages polarized to M1 and M2 macrophages with classical (LPS and IFNγ) stimuli and alternative (IL-4 and IL-13) stimuli respectively. Moreover, these M1 and M2 (primary) polarized macrophages rapidly underwent a secondary (re)polarization to M2 and M1 with conditioned media from M2 and M1 primary polarized macrophages respectively. In these initial priming and later (re)polarization processes the soluble factors had a dominant and orchestrating role, while the type of ECM (collagen I, fibronectin, versus tissue culture polystyrene) did not play a crucial role on the polarization of macrophages.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Diana T.A. Ploeger, Sander M. van Putten, Jasper A. Koerts, Marja J.A. van Luyn, Martin C. Harmsen,