Article ID Journal Published Year Pages File Type
2186464 Journal of Molecular Biology 2009 11 Pages PDF
Abstract

Parkinson's disease (PD) is associated with the deposition of fibrillar aggregates of the protein α-synuclein (αS) in neurons. Intramolecular contacts between the acidic C-terminal tail of αS and its N-terminal region have been proposed to regulate αS aggregation, and two originally described PD mutations, A30P and A53T, reportedly reduce such contacts. We find that the most recently discovered PD-linked αS mutation E46K, which also accelerates the aggregation of the protein, does not interfere with C-terminal-to-N-terminal contacts and instead enhances such contacts. Furthermore, we do not observe a substantial reduction in such contacts in the two previously characterized mutants. Our results suggest that C-terminal-to-N-terminal contacts in αS are not strongly protective against aggregation, and that the dominant mechanism by which PD-linked mutations facilitate αS aggregation may be altering the physicochemical properties of the protein such as net charge (E46K) and secondary structure propensity (A30P and A53T).

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , ,