Article ID Journal Published Year Pages File Type
2187478 Journal of Molecular Biology 2008 11 Pages PDF
Abstract

Gene regulation during development is an important biological activity that leads to synthesis of biomolecules at specific locations and specific times. The single tropomyosin gene of Caenorhabditis elegans, tmy-1/lev-11, produces four isoforms of protein: two from the external promoter and two from the internal promoter. We investigated the internal promoter of tropomyosin to identify sequences that regulate expression of tmy-1 in the pharynx and intestine. By promoter deletion of tmy-1 reporters as well as by database analyses, a 100-bp fragment that contained binding sequences for a GATA factor, for a chicken CdxA homolog, and for a forkhead factor was identified. Both the forkhead and CdxA binding sequences contributed to pharyngeal and intestinal expression. In addition, the GATA site also influenced intestinal expression of tmy-1 reporter. We showed that ELT-2 and PHA-4 proteins interact directly with the GATA and forkhead binding sequences, respectively, in gel mobility shift assays. RNA interference knockdown of elt-2 diminished tmy-1∷gfp expression in the intestine. In contrast to RNA interference knockdown of pha-4, expression of tmy-1∷gfp in pha-4;smg-1 mutants was slightly weaker than that of the wild type. Ectopic expression of PHA-4 and ELT-2 by heat shock was sufficient to elicit widespread expression of tmy-1∷lacZ reporter in embryos. We found no indication of a synergistic relation between ELT-2 and PHA-4. Based on our data, PHA-4 and CdxA function as general transcription factors for pharyngeal and intestinal regulation of tmy-1. We present models by which ELT-2, PHA-4, and CdxA orchestrate expression from the internal promoter of tmy-1.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,