Article ID Journal Published Year Pages File Type
2188040 Journal of Molecular Biology 2008 10 Pages PDF
Abstract

Oxyimino-cephalosporin antibiotics, such as ceftazidime, escape the hydrolytic activity of most bacterial β-lactamases. Their widespread use prompted the emergence of the extended-spectrum β-lactamases CTX-Ms, which have become highly prevalent. The C7 β-amino thiazol-oxyimino-amide side chain of ceftazidime has a protective effect against most CTX-M β-lactamases. However, Asp240Gly CTX-M derivatives demonstrate enhanced hydrolytic activity against this compound. In this work, we present the crystallographic structures of Asp240Gly-harboring enzyme CTX-M-16 in complex with ceftazidime-like glycylboronic acid (resolution 1.80 Å) and molecular dynamics simulations of the corresponding acyl–enzyme complex. These experiments revealed breathing motions of CTX-M enzymes and the role of the substitution Asp240Gly in the accommodation of ceftazidime. The substitution Asp240Gly resulted in insertion of the C7β side chain of ceftazidime deep in the catalytic pocket and orchestrated motions of the active serine Ser70, the β3 strand and the omega loop, which favored the key interactions of the residues 237 and 235 with ceftazidime.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , ,