Article ID Journal Published Year Pages File Type
2188729 Journal of Molecular Biology 2007 16 Pages PDF
Abstract

Transport into and out of the nucleus is regulated by the nuclear pore complex. Vital to this regulation are nuclear pore proteins with FG sequence repeats, which have been shown to be crucial for cell viability and which interact with nuclear transport receptors. Here we use molecular dynamics simulations to investigate the binding of FG-repeat peptides to the surface of NTF2, the Ran importer. The simulations, covering over 254 ns, agree with previous X-ray, mutational, NMR, and computational data in identifying four binding spots. They also serve to provide an all-atom view of binding at each spot, whereas FG-repeat binding has been only directly observed at a single spot. Furthermore, the simulations identify two novel binding spots in addition to the four others. All six binding spots broadly form a stripe across the surface of NTF2. The resulting regularity and proximity of binding spots on the surface may be necessary for identification of the transport receptor by the FG-repeats in the nuclear pore complex and for the successful transit of NTF2 through the pore.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, ,