Article ID Journal Published Year Pages File Type
2188901 Journal of Molecular Biology 2006 13 Pages PDF
Abstract

An in-vitro selection strategy was used to obtain strongly stabilized variants of the β1 domain of protein G (Gβ1). In a two-step approach, first candidate positions with a high potential for stabilization were identified in Gβ1 libraries that were created by error-prone PCR, and then, after randomization of these positions by saturation mutagenesis, strongly stabilized variants were selected. For both steps the in-vitro selection method Proside was employed. Proside links the stability of a protein with the infectivity of a filamentous phage. Ultimately, residues from the two best selected variants were combined in a single Gβ1 molecule. This variant with the four mutations E15V, T16L, T18I, and N37L showed an increase of 35.1 °C in the transition midpoint and of 28.5 kJ mol−1 (at 70 °C) in the Gibbs free energy of stabilization. It was considerably more stable than the best variant from a previous Proside selection, in which positions were randomized that had originally been identified by computational design. Only a single substitution (T18I) was found in both selections. The best variants from the present selection showed a higher cooperativity of thermal unfolding, as indicated by an increase in the enthalpy of unfolding by about 60 kJ mol−1. This increase is apparently correlated with the presence of Leu residues that were selected at the positions 16 and 37.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, ,