Article ID Journal Published Year Pages File Type
2189100 Journal of Molecular Biology 2006 16 Pages PDF
Abstract

Rad51 is the core component of the eukaryotic homologous recombination machinery and assembles into extended nucleoprotein filaments on DNA. To study the dynamic behavior of Rad51 we have developed a single-molecule assay that relies on a combination of hydrodynamic force and microscale diffusion barriers to align individual DNA molecules on the surface of a microfluidic sample chamber that is coated with a lipid bilayer. When visualized with total internal reflection fluorescence microscopy (TIRFM), these “molecular curtains” allow for the direct visualization of hundreds of individual DNA molecules. Using this approach, we have analyzed the binding of human Rad51 to single molecules of double-stranded DNA under a variety of different reaction conditions by monitoring the extension of the fluorescently labeled DNA, which coincides with assembly of the nucleoprotein filament. We have also generated several mutants in conserved regions of Rad51 implicated in DNA binding, and tested them for their ability to assemble into extended filaments. We show that proteins with mutations within the DNA-binding surface located on the N-terminal domain still retain the ability to form extended nucleoprotein filaments. Mutations in the L1 loop, which projects towards the central axis of the filament, completely abolish assembly of extended filaments. In contrast, most mutations within or near the L2 DNA-binding loop, which is also located near the central axis of the filament, do not affect the ability of the protein to assemble into extended filaments on double-stranded (ds)DNA. Taken together, these results demonstrate that the L1-loop plays a crucial role in the assembly of extended nucleoprotein filaments on dsDNA, but the N-terminal domain and the L2 DNA-binding loop have significantly less impact on this process. The results presented here also provide an important initial framework for beginning to study the biochemical behaviors of Rad51 nucleoprotein filaments using our novel experimental system.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , ,