Article ID Journal Published Year Pages File Type
2189444 Journal of Molecular Biology 2006 13 Pages PDF
Abstract

Bacterial cold shock proteins (CSPs) are involved in cellular adaptation to cold stress. They bind to single-stranded nucleic acids with a KD value in the micro- to nanomolar range. Here we present the structure of the Bacillus subtilis CspB (Bs-CspB) in complex with hexathymidine (dT6) at a resolution of 1.78 Å. Bs-CspB binds to dT6 with nanomolar affinity via an amphipathic interface on the protein surface. Individual binding subsites interact with single nucleobases through stacking interactions and hydrogen bonding. The sugar-phosphate backbone and the methyl groups of the thymine nucleobases remain solvent exposed and are not contacted by protein groups. Fluorescence titration experiments monitoring the binding of oligopyrimidines to Bs-CspB reveal binding preferences at individual subsites and allow the design of an optimised heptapyrimidine ligand, which is bound with sub-nanomolar affinity. This study reveals the stoichiometry and sequence determinants of the binding of single-stranded nucleic acids to a preformed site on Bs-CspB and thus provides the structural basis of the RNA chaperone and transcription antitermination activities of the CSP.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , ,