Article ID Journal Published Year Pages File Type
2189807 Journal of Molecular Biology 2006 16 Pages PDF
Abstract

The formation of fibril aggregates by long polyglutamine sequences is assumed to play a major role in neurodegenerative diseases such as Huntington. Here, we model peptides rich in glutamine, through a series of molecular dynamics simulations. Starting from a rigid nanotube-like conformation, we have obtained a new conformational template that shares structural features of a tubular helix and of a β-helix conformational organization. Our new model can be described as a super-helical arrangement of flat β-sheet segments linked by planar turns or bends. Interestingly, our comprehensive analysis of the Protein Data Bank reveals that this is a common motif in β-helices (termed β-bend), although it has not been identified so far. The motif is based on the alternation of β-sheet and helical conformation as the protein sequence is followed from the N to the C termini (β-αR-β-polyPro-β). We further identify this motif in the ssNMR structure of the protofibril of the amyloidogenic peptide Aβ1-40. The recurrence of the β-bend suggests a general mode of connecting long parallel β-sheet segments that would allow the growth of partially ordered fibril structures. The design allows the peptide backbone to change direction with a minimal loss of main chain hydrogen bonds. The identification of a coherent organization beyond that of the β-sheet segments in different folds rich in parallel β-sheets suggests a higher degree of ordered structure in protein fibrils, in agreement with their low solubility and dense molecular packing.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,