Article ID Journal Published Year Pages File Type
2192325 Journal of Molecular and Cellular Cardiology 2007 9 Pages PDF
Abstract

Voltage-gated cardiac fast sodium channel current (INa) plays a critical role in the initiation and propagation of the myocardial action potential, and regulation of cardiac INa by protein tyrosine kinases (PTKs) is not well documented, though it is known that ion channels are among the targets of PTKs. The present study was therefore designed to investigate whether/how cardiac INa was modulated by PTKs in guinea pig ventricular myocytes using whole-cell patch clamp and immunoprecipitation and Western blotting approaches. It was found that cardiac INa was enhanced by epidermal growth factor (EGF), and the effect was antagonized by the selective epidermal growth factor receptor (EGFR) kinase inhibitor tyrphostin AG556 while potentiated by orthovanadate (a protein tyrosine phosphatase (PTP) inhibitor). In addition, AG556 inhibited, while orthovanadate increased INa, and the inhibition of INa by AG556 was antagonized by orthovanadate. Immunoprecipitation and Western blotting analysis demonstrated that tyrosine phosphorylation level of cardiac sodium channels was enhanced by EGF or orthovanadate, and reduced by AG556. The AG556-induced reduction of phosphorylation level was significantly reversed by orthovanadate. Our results demonstrate the novel information that EGFR kinase enhances, and PTPs reduce native cardiac INa in guinea pig ventricular myocytes.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,